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AIOps is a new category of IT operations tools, 
created primarily to deal with the challenges 
associated with operating the next generation 
of IT infrastructure. Enterprises are taking 
notice, with Gartner estimating  that half of all 
global enterprises will be actively using AIOps by 
2020.

The core appeal of AIOps is its use of algorithms 
and machine learning to automate tasks and 
processes that have traditionally required 
human intervention. Machine learning for 
IT incident management is available today; 
however, it does not necessarily exist in every 
vendor solution that claims AIOps.

Part 1:  
Beyond the Buzzwords

Two of the biggest buzzwords to cross from 
the world of computer science and technology 
startups are “machine learning“ and “artificial 
intelligence.” Throw in “deep learning’,” and we’ve 
got the start of a great game of buzzword bingo. 
These terms are closely linked and are often 
used interchangeably, but they aren’t quite the 
same thing.

AI covers the broadest range of technologies, 
machine learning is a set of technologies within 
AI, and deep learning is a specialization within 
machine learning.
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AI: More Artificial or More 
Intelligent?

One of the most general definitions of AI, taken 
from the Merriam-Webster dictionary, is “The 
capability of a machine to imitate intelligent 
human behavior.” The term “machine” is 
important, because AI does not have to be 
restricted to computers.

True artificial intelligence would require multiple 
technologies from a wide range of subjects, 
including areas such as speech recognition and 
natural language processing, computer vision, 
robotics, sensor technologies, and one of our 
other buzzwords, “machine learning.” In many 
cases, machine learning is a tool used by these 
other technologies.

In its very earliest days, AI relied upon 
prescriptive expert systems to work out what 
actions to take, an “if this happens, then do 
that” approach. And while prescriptive expert 
systems still have a place in some sectors, their 
influence is much diminished, and that function 
has largely been replaced by machine learning. 

A prime example of modern AI is in virtual and 
voice assistants such as Siri, Cortana, or Alexa, 
all of which employ technologies that allow 
them to “hear” a human voice, understand 
which sounds correspond to which words and 
phrases, infer meaning from the series of words 
that were identified, and formulate an answer. 
These are all systems that require multiple 
technologies, including machine learning.

What is Machine Learning, Then?

Machine learning is a field within computer 
science that has applications under the wider 
umbrella of AI. A preferred definition is one 
quoted in Stanford University’s excellent 
machine learning course: “Machine learning is 
the science of getting computers to act without 
being explicitly programmed.” So rather than 
programming a system using an “if this, then 
that” approach, in the world of machine learning, 
the decisions that the system makes are derived 
from the data that have been presented to it. 
It’s like a “learn by example” approach, but with 
more sophistication. 

Machine learning is now so common in the 
world around us that there are countless 
applications where we may not even realize it 
plays a part. Automatic mail sorting and speed 
limit enforcement systems rely upon incredibly 
accurate implementations of Optical Character 
Recognition (OCR), which is basically identifying 
text in images. It’s a technology that allows us 
to identify addresses on envelopes and parcels, 
or the license plates on a vehicle as it passes 
through a red light or travels too fast outside a 
school. OCR would not exist without machine 
learning, though unfortunately, speeding tickets 
still would.

Supervised and Unsupervised: 
Learning by Example

Machine learning falls into two categories, 
supervised and unsupervised, with differences 
in their underlying algorithms and their 
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applications. Unsupervised techniques are 
generally simpler, and try to find patterns within 
a set of given observations. Recommender 
systems rely heavily on these techniques.

In contrast, supervised learning is the “learn 
by example” approach. Supervised learning 
systems need to be given examples of what is 
“good” and what is “bad” — this email is spam, 
this email isn’t, for example. 

In the field of OCR, the system would be 
provided with multiple images of different 
letters and told which letter that image 
represents. As a system is provided with more 
examples, it learns how to distinguish between 
a spam email and one that isn’t, and it learns 
the different arrangements of pixels that can 
represent the same letters and numbers. When 
a new example is presented to the system, 
specifically an example it hasn’t seen before, it 
can then identify correctly whether or not the 
email is spam, or which address the letter needs 
to go to, or the licence plate of the speeding car.

Neural Networks, a Part of 
Supervised Learning

Within the field of supervised learning there 
are numerous techniques, one of which is 
called “neural networks.” Neural networks are 
software systems that try to mimic, often 
crudely, the way a human brain works. The 
concept of the neural network has been around 
for decades but it is only relatively recently 
that its true power has been realized. A neural 
network is made up of artificial neurons, with 

each neuron connected to other neurons. As 
different training examples are presented to 
the network (for instance, an image or an email) 
along with the expected output of the system 
(the letter in the image, or whether or not the 
email is spam), the network works out which 
neurons it needs to activate in order to achieve 
the desired output. 

Here is how it works: The neural network is able 
to configure itself so that the neurons that get 
activated when a spam email is presented to it 
will be different from those triggered by a non-
spam email. As a result, the rest of the system 
can then make a decision on how to handle that 
email.

One Last thing: Deep Learning

We now get to our final buzzword, “deep 
learning.” It’s a very specific and phenomenally 
exciting field within neural networks. In the 
same way that machine learning enables 
artificial intelligence, deep learning enables 
machine learning.

Think of a deep network as a larger and 
more complex network, with more complex 
and sophisticated interactions between the 
individual nodes. Deep learning employs 
multiple “layers” with complex interactions 
within each layer and between layers to identify 
patterns and solve problems.

Deep learning is at the leading edge of 
machine learning research, and some of the 
advances in it have resulted in technologies 
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such as automatic translation, automatic 
caption generation for images, automatic text 
generation, and even creating plays in the style 
of Shakespeare. And in the same way that 
machine learning is the main enabler of AI, 
deep learning, right now, is the main enabler of 
advances in machine learning.

Part 2: A Deeper Look at  
Machine Learning

Machine learning systems try to predict a value 
for something using three things: 

1. A way of describing the subject of our 
prediction

2. A question that we want to answer

3. An algorithm that can take the description 
and provide an answer to our question

In machine learning terminology, the way that 
we tell our system about the subject of our 
question is by using something called a “feature 
vector.” That may sound a bit abstract, but you 
have no doubt heard the phrase “If it looks like 
a duck, walks like a duck and sounds like a duck, 
then it’s a duck.”

These attributes — how it walks, how it sounds, 
how it looks — are examples of different 
features, and the value of each feature will help 
the machine learning system decide whether 
the object is or isn’t a duck.

Every type of object has its own set of features, 
and different instances of each type of object 
will have different values for those features. All 
ducks may swim and quack, but some ducks are 
bigger than others and have different colored 
plumage.
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A common example used in machine learning 
courses is that of predicting a house price. 
Houses have countless different attributes: How 
old is it? How many bedrooms does it have? 
What is the total size? Does it have a garden? 
What color is the front door? What are the local 
schools like? Is it well maintained? 

By aggregating the values of each of these 
attributes or features into a list or vector, 
we have a way of telling the algorithm in 
the machine learning system about the 
characteristics of the house, and other houses 
that may spark our interest.

Features Affect Values

Let’s follow through with this housing example. 
The size of a house likely will have the biggest 
impact on value, whereas the quality of the local 
schools may be important for those buyers with 
families of school age. The color of the front 
door will have no impact.

So while a subject may have many features, not 
all features are relevant to a given problem. As a 
result, it’s important that your machine learning 
system uses features that discriminate between 
the different states that you’re trying to identify, 
which depends upon the question you are 
asking of your machine learning system.

The process of selecting the most appropriate 
features for any given problem is called “feature 
selection” or “feature engineering.”

Input Question, Output Answer

Feature engineering gives us a way of describing 
our subjects to an algorithm, but what are we 
actually trying to do? What is the question we 
are asking of our system?

There are two types of questions that machine 
learning systems attempt to answer: “Is it a 
duck?” or “What is it?” and questions like “How 
big is it?” or “How much is a house worth?”

Questions about size produce answers that 
have what is called a “continuous distribution,” 
where the value can be anywhere between 
some practical constraints. This class of problem 
is called a “regression” problem. Trying to predict 
the price of a house, a stock, the size of a crop 
yield, or the capacity of a new data center are all 
examples of regression problems.

Regression problems are solved using 
supervised machine learning techniques, 
because a set of values or labels are required 
upon which to base the prediction. Let’s return 
to the house price example. We have a set of 
different houses and a set of features for each 
house. We know the size of the house and 
garden, where it’s located, and maybe even the 
color of the front door. We also have a label, 
knowing how much each house is worth.

Now at some point in all of our experiences, 
whether it was in a math class or at work, there 
is a good chance that you will have plotted a 
graph of some data and then fitted a line to that 
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In supervised learning, the “What is it?” 
question is called a “classification” problem, 
and the system that is used to answer these 
questions is called a classifier. In the world of 
unsupervised learning, the “What is it?” question 
is a “clustering” problem, and the system used 
to answer these questions is typically called a 
clustering engine.

Classification vs Clustering

Let’s explore that distinction in more detail. 
Classification aims to define the best category 
that an object fits into given a predefined set 
of possible options. Does the image contain a 
face? Is that animal a duck? These are examples 
of what is called “Binary Classification,” because 
there are only two categories to choose from: 
“duck” and “not duck,” or “there is a face” and 
“there is not a face.”

There are also classification problems in which 
there are multiple categories, systems that can 
handle these questions are called “multi-class” 
classifiers. For example, “Is that animal a duck, a 
dog, or a horse?” 

Earlier we briefly described OCR, a machine 
learning technique that tries to read text in 
images. If we use English text (and for simplicity 
ignore upper/lower case characters and 
punctuation marks), then each character will be 
one of either 26 letters or 10 digits — and so 
OCR becomes a 36-class classification problem.

data. So, if we have a graph that shows how the 
value of a house changes with its size, and there 
is a relationship between those two attributes, 
then a simple curve-fitting exercise will allow us 
to estimate the price of another house based 
only on its size.

For many people, that doesn’t feel much like 
machine learning. If you do an Internet search, 
there is debate about whether it is or isn’t, as 
it certainly doesn’t have a wow factor like, say, 
automatic translation between languages or 
automatic captioning of an image. But recall 
the definition of machine learning from earlier: 
machine learning is a technique that allows a 
machine to make a decision on data which it 
has not seen before. Whether there is a wow 
factor or not is irrelevant; the techniques, such 
as linear regression used in curve-fitting, even 
though they are very simple, form the basis 
of numerous algorithms in machine learning. 
These undramatic but useful techniques are a 
fundamental component of data scientists’ and 
machine learning engineers’ toolkits.

In contrast to regression, the answer to a “What 
is it?” type of question will come from a set of 
categories rather than a continuous range. In 
the machine learning world, the these kinds of 
questions can be handled in a number of ways, 
depending upon what we want to achieve, and 
the available data. Questions of this type can be 
answered by both supervised and unsupervised 
techniques, but the best approach depends 
upon the specifics of your question.
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The fundamental difference between classifiers 
and clustering engines is that in clustering, 
the groups into which something is assigned 
are unknown in advance and are determined 
entirely by the patterns in the data. Clustering 
algorithms take a set of objects and split them 
into groups, or clusters, where everything in 
each cluster, is similar to everything else in 
that cluster but different from items in other 
clusters.

Let’s say we are trying to create a system that 
can recognize different animals, and I have 
two systems, a supervised machine learning 
approach (a classifier) and an unsupervised 
approach (a clustering engine). We will also 
assume that the classifier has been well trained 
and produces accurate results. Now, if my 
collection contains multiple different animals 
such as ducks, dogs, and horses, and equal 
numbers of each, then if I present that collection 
to my classifier, it would correctly recognize 
each one and assign it to the appropriate 
category.

Similarly, if I presented that collection to a 
clustering engine and I had chosen my features 
well, I may also expect it to split the collection 
into three clusters, one for each animal. 
Importantly, though, the unsupervised system 
would be unable to label those clusters, as no 
one has told it what each cluster represents. It 
just knows that each cluster contains similar 
things.

But if I change my data so the collection of 
animals contains only ducks, then the two 
systems start to behave differently. The 
supervised system (the classifier) will still be 
able to say that each animal is a duck. It doesn’t 
care that every example has the same label. It 
just compares the features of the animal it has 
been presented with against the features of 
everything it has previously been told is a duck, 
and tries to determine if there is a good enough 
match.

However, the unsupervised system, the 
clustering engine, which is looking for patterns 
within the data it has been presented with, is 
now looking for patterns only within that set 
of ducks. Many of the features of a duck which 
will help to distinguish it from other animals, 
(Does it have feathers? Does it have webbed 
feet? Does it quack?) will have the same value 
for every duck and so the clustering engine 
will ignore those features. The clustering 
engine tries to find patterns in all the other 
features it has been given. So if those other 
features include the animal’s color and size, the 
clustering engine may well split the collection 
into different colored ducks or ducks of different 
sizes.

These differences in behavior highlight the 
strengths and weaknesses of both approaches. 
Supervised systems need to know up-front 
what they are looking for and they need to 
be trained to look for those categories.Those 
activities take time, but the advantage is that 
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a duck will always be a duck. Unsupervised 
techniques will look for hidden patterns in your 
data — the “unknown unknowns” — and if 
your data changes, then your patterns will 
change, too.

So, if you know that you are trying to identify 
whether an animal is a duck, an unsupervised 
system probably won’t give you the answer you 
expect.  But if you want to find groups of similar 
ducks, groups of big ducks and little ducks, or 
white ducks and yellow ducks, then clustering 
techniques are the best approach.

Clustering, regression, and classification can 
be used to answer a vast array of questions 
or solve a multitude of problems. Problems 
exist everywhere, including in the world of IT 
Operations. 

Part 3:  
Fishing in a Sea of Data

Before ITOps teams can utilize machine learning 
and AI to analyze data, they need to define 
what exactly they’re trying to achieve. We have 
already looked at terminology used in machine 
learning, and explored machine learning 
techniques, including  clustering, classification, 
and regression, and the problems that they 
are best suited to address. Here, we will start 
to investigate how machine learning can solve 
many of the problems that are faced everyday 
in IT Operations, and specifically how ML helps 
with the process of data ingestion and the 
reduction of alert fatigue on operators. 

What are IT Ops Teams trying to 
achieve?

It is stating the obvious to say that the ongoing 
objective of IT Operations teams is to minimize 
resolutions times, reduce costs, and eliminate 
customer impacting outages. 
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These are the problems that AIOps was 
designed to address.

Fitting Machine Learning into IT 
Operations

Machine learning and artificial intelligence are 
used everywhere, and there is no doubt that 
these technologies can produce extraordinary 
solutions. Still, throwing machine learning at a 
problem isn’t ideal. 

The variety of techniques is huge, and the 
right ones need to be adopted for the specific 
problem. Machine learning has its shortcomings, 
too. There are circumstances that are better 
suited for a logic-based algorithm approach. 
Algorithms need to be coupled with a clean and 
efficient user experience, and sometimes it’s the 
UX innovations that are key.

So let’s dig into some of the pain points around 
event ingestion, and see where machine 
learning techniques can provide some or all of 
the solution.

Alert Fatigue

Examples of alert fatigue exist everywhere. It is 
exemplified by those things that happen around 
us everyday that we ignore because they are so 
commonplace. When was the last time that you 
really noticed a fire drill?

Alert fatigue comes about through the 
avalanche of data that modern systems 
generate. In even a modest-sized enterprise, an 

Breakages are a fact of life in any system, 
regardless of the underlying architecture. It 
is how an operations team deals with those 
failures, and the quality of the tools at their 
disposal, that allows them to achieve their goals 
and meet business needs.

No one sets out to design a system that is 
hard to manage or prone to failure, but some 
architectures can increase the demands 
on an operations team. Often, the system 
architectures that a business requires — 
such as cloud computing, micro-services, and 
continuous deployment — are the ones that 
can add significant management complexity and 
increase the number of points of failure in that 
system, making the tools that are available to 
an operations team even more important.

The Pain Points

The pain points that  show up as long resolution 
times and customer-facing outages stem from 
things such as:

• Alert fatigue

• Difficulty in identifying the cause of a 
problem

• Inefficient communication

• Poor collaboration

• Poor remediation processes

Adopt an approach and toolset that solve these 
issues, and your team is no longer fighting fires, 
but has the time to improve. You’re using time 
now to save time in the future, while meeting 
the commitments made to your customers. 
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IT infrastructure can generate millions of events 
a day. Add raw time-series data to that mass of 
data, and the volume can increase significantly. 
Buried somewhere in all of those application 
heartbeats and “authentication failed’ messages 
will be the handful of alarms that pinpoint a 
customer-impacting failure and its root cause.

Minimizing alert fatigue isn’t simply about 
reducing the volume of events that need to 
be processed, though — that’s easy, and the 
wrong approach. Filtering an event stream 
to ignore certain sources and thresholding to 
only process critical alarms are examples of 
techniques that will reduce the volume of data, 
but at the same time discard the possible cause. 
They are also techniques that require a human 
to maintain.

One of the most enduring techniques for volume 
reduction is event deduplication, the act of 
grouping repeating events to a single alert. On 
its own, this approach can no longer produce the 
required impact. The volume of data, even after 
deduplication, is still huge. But to its advantage, 
it doesn’t remove data from the system. Your 
team is presented with a more manageable 
amount of data.

The real solution to alert fatigue needs a 
different approach, and it’s an approach made 
up of several stages.

Yes, it is about discarding those alerts that are 
meaningless, but it is also about processing 
what’s left in a way that allows your ITOps team  

“Machine learning 
is the science of 
getting computers 
to act without 
being explicitly 
programmed.
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to get to the cause of the problem quickly, and 
displaying the information that gets them there 
in an easily consumable way.

It’s about knowing what normal is, and what 
it isn’t, and this is where machine learning and 
data science techniques are needed — using 
past data to provide a benchmark of what is 
normal for your infrastructure.

Normal Is Different for Everyone

For the initial part of the process, AIOps uses 
a concept of entropy as a way of achieving 
noise reduction. In this context, entropy means 
that we are looking for events with lower 
probability, which means that they carry more 
information than higher-probability events. This 
value encapsulates the what, when, and where 
of an event: What is the event? When does it 
happen? And where in the infrastructure is it 
coming from? And we use these questions to 
build a picture of what is normal, based on the 
analysis of past events. So we can then evaluate 
whether events entering the system require an 
action.

First, let’s take a look at time series data.

Time Series Data: Only Forward the 
Anomalies, Please

Time series data is the periodic reporting 
of status data from a server, or application 
reported by a monitoring solution. If all is well, 
your server may report that it has “25% CPU 
utilization” and “45% free disk capacity,” and it 

will keep doing that every five minutes, until you 
tell it to stop. Another 288 events per metric 
per server per day. Almost every one of which 
will be reporting, “I’m fine, there’s nothing to see 
here!”

An ops team doesn’t need to see this sort of 
data; they only need to know when something 
has gone wrong, when something is out of 
the ordinary, and this is where we step into 
the world of outlier detection and anomaly 
detection.

Outlier detection and anomaly detection are 
terms that are sometimes used interchangeably. 
At Moogsoft we favor the following definitions.

An outlier is a value of a metric that is different 
from other values of that same metric when 
you would expect them all to be similar. For 
example, the CPU load on the servers behind 
a load balancer may be expected to lie within 
a very specific range. Let’s say CPU utilization 
fluctuates between 40% and 50% but at one 
specific time of day there is a single server 
running at 70% CPU. That specific measurement 
may be classified as an outlier: it is different to 
all the other servers’ CPU usage.

The presence of an outlier may also indicate 
an error in your monitoring, a value that is so 
far from expected that perhaps it’s not the 
systems being monitored, but the method itself. 
However, just because a value is an outlier 
in one context, it doesn’t necessarily mean 
that it is anomalous. An anomaly is where a 
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measurement doesn’t follow historical trends. 
So our hot-running server, whilst an outlier in 
the context of similar servers at a specific point 
in time, may always run at 70% because, for the 
sake of argument, it is the master server in an 
HA group. If its utilization spiked to say 95%, that 
would be an anomaly because it is not following 
its historical behavior.

But what has this got to do with machine 
learning  and alert fatigue? Simply ignoring time 
series data is not an option, despite the volume 
of data, so instead of forwarding every piece of 
time series data to your operators, you should 
only forward your anomalies. But how do we do 
that?

A simplistic approach is to use a simple 
threshold: If CPU is greater than 80% it’s an 
anomaly. But what is right for one set of servers 
won’t be for another set. Maybe CPU spikes are 
expected at certain times of day but running at 
95% in the middle of the night isn’t. Accounting 
for these scenarios with manually created 
rules quickly becomes too complex for these 
thresholding techniques.

The more complex your criteria become, the 
more complex the underlying algorithms tend 
to be. Some very effective (and non-machine 
learning) algorithms do exist to capture 
these use cases, techniques such as dynamic 
thresholding and “seasonality and trend 
decomposition.” But to capture the full array of 
scenarios, you need to add machine learning 
techniques into your algorithmic toolbox.

Unsupervised clustering techniques such as 
k-means, or nearest-neighbor clustering are 
often used for outlier detection. But when 
business needs require us to identify whether 
a metric is following historical behaviors and 
trends, we soon get into the state-of-the-art 
deep-learning-based solutions using recurrent 
neural networks — solutions involving 
techniques such as Hierarchical Temporal 
Memory or Long Short-Term Memory.

Enrichment

At this point in the life cycle of an alert we have 
de-duplicated our event stream, removed the 
noise, and are reporting only anomalies from our 
time-series monitoring solution. But the impact 
of machine learning on data ingestion doesn’t 
end there.

The more AIOps knows about an alert, the 
higher the accuracy with which that alert can 
be processed. But the richness of the data in an 
alert is highly dependent upon its source. Events 
forwarded from an APM platform will contain 
highly relevant data about an application and 
the services that it provides. The SNMP Traps 
generated on your network hardware comply 
with strict protocols, and generally contain well 
structured, explicitly labeled data.

Contrast that with the events from a data 
aggregator or a raw application log file, and the 
situation is very different. Your systems need 
to be able to extract the relevant parts of the 
message to create a coherent alert.
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As always there is a solution that relies upon 
manually created and maintained rules: 
regular expressions to match tokens such as 
IP addresses and dates and time, keyword 
matching such as “LinkDown” and “LinkUp” to 
match fail/clear pairs, or “login fail” and “invalid 
password” to indicate the alert is related to a 
security issue. While this approach has utility 
and can be highly effective, it is now outdated. 
The complexity and quantity of the different 
look-ups soon becomes overwhelming: 
the maintenance issue is obvious, and it is 
surprisingly resource intensive when applied 
in real time against thousands of alerts per 
second.

It will come as no surprise by now that machine 
learning techniques can help us out. Named 
Entity Recognition techniques borrowed from 
the field of Natural Language Processing provide 
more efficient ways of extracting different 
types of tokens from the event text. Supervised 
learning techniques such as classification 
can help us identify the class of an alert: is it 
related to “audit” or “security,” or is it from an 
application or a piece of network hardware, even 
if it is a state-transition event as part of a fail/
clear pair?

So far we’ve looked at some of the ways 
machine learning can be used to help ingest 
data and reduce the volume of data presented 
to your operations team whilst retaining the 
important stuff. But that’s not where we end 
our quest to reduce alert fatigue. 

Part 4:  
Applying Machine Learning 
Algorithms Within AIOps

As we continue the journey of an alert through 
the management process, we begin to see 
how machine learning can be used to reduce 
alert fatigue. Previously, we concentrated 
specifically on reducing alert fatigue during 
event ingestion. Prior to that we looked at the 
background to machine learning, examining 
some of the terminology and buzzwords, 
along with an overview of the different types 
of problems that machine learning can be 
applied to, and their solution techniques — 
techniques such as clustering, supervised and 
unsupervised learning, and problem types such 
as classification and regression.

Alert Fatigue

During the event ingestion process, 
deduplication and unsupervised machine 
learning techniques such as entropy are well 
known approaches that AIOps exploits to 
reduce event noise. Add in anomaly and outlier 
detection for processing time-series data, and 
we have an effective way of reducing thousands 
of events to little more than a handful of alerts. 
But reducing alert fatigue doesn’t stop there.

The whole concept of situational awareness, 
part of the founding principles behind AIOps, 
brings about the next layer of relief from the 
pain of alert fatigue. Add a sprinkling of Probable 
Root Cause into the mix, and we start to attack 
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our other pain points too, specifically: identifying 
the cause of an incident, and poor remediation 
processes.

Once an alert has been ingested, assigned 
an entropy, deduplicated, and enriched with 
external data, we have everything needed to 
inform the creation of actionable incidents, 
or “situations,” in the form of operationally 
significant groups of alerts. Sometimes, the 
required information may be incomplete. 
Sometimes the enrichment data may have 
been retrieved from multiple sources leading 
to conflicts in what should be canonical data 
— not ideal, but the sort of real-world problem 
that needs to be handled by IT management 
systems

The process of grouping alerts is generally 
referred to as “correlation.” The dictionary 
definition of correlation is “a mutual relationship 
or connection between two or more things 
which tend to occur together in a way not 
expected on the basis of chance alone.”

Correlation

In the world of IT Operations, correlation is 
often interpreted as the ability to make deep 
connections between seemingly disparate data, 
and while that is certainly part of the challenge, 
it isn’t the entire challenge. What constitutes a 
relationship or a connection in the first place? 
Well, it’s anything the managing enterprise 
wants it to be, and what is meaningful in one 
organization may mean nothing in another.
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There are certainly failure scenarios in which 
the correlation need is universal across all 
organizations — correlating link-up and link-
down pairs to identify a flapping interface, 
for example. But there are many use cases in 
which the approach to correlation chosen by 
one enterprise may not align with how another 
needs to manage their infrastructure.

Consider an ISP that chooses to manage 
their street-level access infrastructure based 
on network topology. What about the retail 
bank that wants to manage its branches and 
Automated Teller Machine network based on 
street address? Or the Web Service Provider 
that finds the most efficient way to manage 
their infrastructure is to group alerts in a 
way that mirrors the remedial steps that its 
operators need to take, even though the failures 
may be on disparate parts of its infrastructure 
and share no form of topological or geographical 
proximity?

The core events across all of these use cases 
will be very similar, maybe even identical. But 
there isn’t, yet, a one-size-fits-all algorithm that 
can understand that these otherwise identical 
alerts need to be handled in a certain way in one 
organization, and in a completely different way 
in another.

Consequently, and in order to address the 
wide variety of operational methodologies 
across different enterprises, AIOps use multiple 
different criteria to correlate alerts, criteria such 
as event arrival times, network topological-

“A prime example of 
modern AI is in virtual 
and voice assistants 
such as Siri, Cortana, or 
Alexa, all of which employ 
technologies that allow 
them to “hear” a human 
voice, understand which 
sounds correspond to 
which words and phrases, 
infer meaning from the 
series of words that were 
identified, and formulate 
an answer. 
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proximity, and contextual similarity between 
combinations of alert attributes.

In AIOps we call the processes responsible for 
finding the connections between alerts and for 
creating situations “sigalizers.” A single instance 
of AIOps can run multiple types of sigalizers and 
multiple instances of each sigalizer concurrently.

Where necessary, events can be routed along 
different processing paths. This allows different 
sigalizers to process different events depending 
upon each event’s characteristics. For example, 
“availability” events from the core of a network 
may be processed independently of other 
events by the time-based or topology-based 
sigalizers, while “application” and “security” 
events may need processing together by a 
sigalizer based on contextual similarity.

What About the Machine Learning?

All of our sigalizers use machine learning in 
some form, whether via an unsupervised 
clustering technique alongside a fuzzy matching 
algorithm, or algorithms that learn from user 
interaction.

“Tempus,” “Nexus,” and “Speedbird” are all 
examples of sigalizers that rely exclusively upon 
unsupervised machine learning.

Tempus

Tempus correlates alerts based on time, 
grouping alerts with similar event arrival 
patterns. At its core are community-detection 

algorithms borrowed from the world of graph 
theory. Tempus requires only a single piece of 
data for its operation: the event arrival time. 
It takes no account of, and has no need for, 
any other event attributes. The sweet spot for 
Tempus is availability-related failure scenarios in 
which all the different failure events are likely to 
be coincident in time.

Nexus

For topology-based use cases, the sigalizer of 
choice is Nexus, and so perhaps unsurprisingly, 
it requires access to a topology database. Nexus 
clusters alerts based on where they are in the 
network, and can only cluster events from 
entities within that topology.

Speedbird

Speedbird uses contextual similarity as its 
correlation criteria, grouping events based on 
the similarity of one or more event attributes 
such as description, or severity, or any other 
data enriched into it.

Both Speedbird and Nexus utilize a proprietary, 
unsupervised, clustering engine based upon 
the wellknown ‘k-means’ algorithm. One of the 
perennial challenges with k-means clustering 
is the need to supply a value for ‘k’, the number 
of clusters the algorithm looks for. AIOps uses a 
patented way of determining that information, 
so it can automatically adapt to the inbound 
event data.
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Feedback

At the opposite end of the machine learning 
spectrum is our “Feedback” sigalizer. 
While Tempus, Nexus, and Speedbird use 
unsupervised learning, Feedback uses 
supervised learning. It looks at the actions 
performed by an operator during the incident 
resolution process: Did the operator need to 
remove outlier alerts? Were there some related 
alerts that needed to be added to the situation? 
Was the situation given a 5-star rating, or 
marked as being of low-quality? These are the 
training triggers that AIOps can take and use to 
inform the creation of future situations.

Pure unsupervised and supervised techniques 
provide great utility, but there are circumstances 
in which they may not be the optimal choice. 
As we’ve seen, the power of unsupervised 
techniques is to find hidden structure within 
a dataset. But what if that hidden structure 
doesn’t align with your management strategy 
all of the time? Tempus and Speedbird are highly 
capable at generating seed situations that 
Feedback can refine, but as we learned in earlier 
posts, these are statistical methods that rely 
upon the quality of the training data they are 
provided with. “Garbage In, Garbage Out” as the 
saying goes.

ACE

This is where ACE, our Algorithmic Clustering 
Engine, comes in. One perspective on ACE 
is that it is, as a hybrid, method somewhere 
between supervised and unsupervised learning. 

The thing is, by the letter of the definitions 
provided in data science textbooks, ACE isn’t 
really supervised learning — we don’t provide 
the system with labelled data — but at the 
same time it is so much more than a pure 
unsupervised technique. We can give ACE 
hints on how we want it to behave, so “guided 
learning” or “guided intelligence” are perhaps 
better descriptions of its capabilities.

ACE uses unsupervised clustering algorithms 
bespoke to AIOps. ACE is a novel streaming-
based clustering algorithm, but the criteria used 
to assign an event to a cluster or situation are 
controlled by simple, similarity-based directives 
that use fuzzy matching techniques to find the 
most appropriate group of events to match it 
with. Something that it is impossible to do with 
a standard unsupervised clustering algorithm.

And One More Thing…

We have tracked our alerts through the 
management process, they have been ingested, 
de-duplicated, and entropy-based noise 
reduction has allowed the meaningless alerts to 
be discarded. And alerts meeting the requisite 
correlation criteria have been grouped into 
situations. But there’s one more application of 
AI to consider in the fight against alert fatigue 
— a feature called “Probable Root Cause,” or 
PRC.

A situation may contain only a handful of alerts, 
it may contain many tens or even hundreds. 
And of course, while AIOps has removed the 
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meaningless events and collapsed potentially 
thousands of events into a single actionable 
incident, operators still need to know which 
alert to fix first, and that’s where Probable Root 
Cause comes in. PRC is the call to action, the 
way to inform operators of the alert they need 
to focus their attention on.

Probable Root Cause is an application of 
supervised machine learning, specifically a 
classification problem solved with a neural 
network.

By providing feedback during the incident 
resolution process, AIOps learns those alerts 
that are root causes, and the circumstances in 
which they happen. It learns the circumstances 
under which a humble ping fail is the root 
cause, but also, when different alerts have been 
triggered, that the same ping fail is now only 
a symptom — a symptom of a power supply 
failure, for example.

By utilizing supervised learning, PRC isn’t 
dependent upon the static behavioral models 
that legacy root cause analysis systems 
rely upon — behavioral models that are 
slow to adapt to rapidly changing virtualized 
infrastructures, models that can’t handle 
common infrastructure implementations such 
as overlay networks. PRC is not constrained 
to a predetermined model of an infrastructure 
or the device types therein, and importantly, it 
can learn the way an organization chooses to 
manage its infrastructure.

Significantly, PRC also has a capability that 
other approaches to root cause analysis simply 
cannot hope to emulate. It can tap into the 
tribal knowledge buried in the minds of your 
operators, the knowledge built up over years 
of managing your infrastructure, knowledge 
than remains in your organization even when 
your key personnel move onto new pastures. 
Not only does PRC, AIOps’ machine-learning 
approach to root cause analysis, contribute to 
the fight against alert fatigue, but it also informs 
the remediation process.

The power of machine learning is 
unquestionable, but it isn’t a silver bullet — 
different algorithms have different sweet-spots. 
That applies across the board, whether you are 
using machine learning or an algorithm based 
on pure logic. And that is where the art lies, and 
what AIOps achieves — knowing the optimal 
approach to solving a problem so you don’t  
need to.
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