
WHITE PAPER

For Information about Moogsoft visit www.moogsoft.com.

Understanding the
Machine Learning in AIOps
Moving beyond the buzzwords: The meaning of AI, machine learning, and
deep learning, and understanding their relationship.

by Robert Harper
May 23, 2018

©2018 Moogsoft Inc. All rights reserved. 2

AIOps is a new category of IT operations tools,
created primarily to deal with the challenges
associated with operating the next generation
of IT infrastructure. Enterprises are taking
notice, with Gartner estimating that half of all
global enterprises will be actively using AIOps by
2020.

The core appeal of AIOps is its use of algorithms
and machine learning to automate tasks and
processes that have traditionally required
human intervention. Machine learning for
IT incident management is available today;
however, it does not necessarily exist in every
vendor solution that claims AIOps.

Part 1:
Beyond the Buzzwords

Two of the biggest buzzwords to cross from
the world of computer science and technology
startups are “machine learning“ and “artificial
intelligence.” Throw in “deep learning’,” and we’ve
got the start of a great game of buzzword bingo.
These terms are closely linked and are often
used interchangeably, but they aren’t quite the
same thing.

AI covers the broadest range of technologies,
machine learning is a set of technologies within
AI, and deep learning is a specialization within
machine learning.

3©2018 Moogsoft Inc. All rights reserved.

AI: More Artificial or More
Intelligent?

One of the most general definitions of AI, taken
from the Merriam-Webster dictionary, is “The
capability of a machine to imitate intelligent
human behavior.” The term “machine” is
important, because AI does not have to be
restricted to computers.

True artificial intelligence would require multiple
technologies from a wide range of subjects,
including areas such as speech recognition and
natural language processing, computer vision,
robotics, sensor technologies, and one of our
other buzzwords, “machine learning.” In many
cases, machine learning is a tool used by these
other technologies.

In its very earliest days, AI relied upon
prescriptive expert systems to work out what
actions to take, an “if this happens, then do
that” approach. And while prescriptive expert
systems still have a place in some sectors, their
influence is much diminished, and that function
has largely been replaced by machine learning.

A prime example of modern AI is in virtual and
voice assistants such as Siri, Cortana, or Alexa,
all of which employ technologies that allow
them to “hear” a human voice, understand
which sounds correspond to which words and
phrases, infer meaning from the series of words
that were identified, and formulate an answer.
These are all systems that require multiple
technologies, including machine learning.

What is Machine Learning, Then?

Machine learning is a field within computer
science that has applications under the wider
umbrella of AI. A preferred definition is one
quoted in Stanford University’s excellent
machine learning course: “Machine learning is
the science of getting computers to act without
being explicitly programmed.” So rather than
programming a system using an “if this, then
that” approach, in the world of machine learning,
the decisions that the system makes are derived
from the data that have been presented to it.
It’s like a “learn by example” approach, but with
more sophistication.

Machine learning is now so common in the
world around us that there are countless
applications where we may not even realize it
plays a part. Automatic mail sorting and speed
limit enforcement systems rely upon incredibly
accurate implementations of Optical Character
Recognition (OCR), which is basically identifying
text in images. It’s a technology that allows us
to identify addresses on envelopes and parcels,
or the license plates on a vehicle as it passes
through a red light or travels too fast outside a
school. OCR would not exist without machine
learning, though unfortunately, speeding tickets
still would.

Supervised and Unsupervised:
Learning by Example

Machine learning falls into two categories,
supervised and unsupervised, with differences
in their underlying algorithms and their

©2018 Moogsoft Inc. All rights reserved. 4

applications. Unsupervised techniques are
generally simpler, and try to find patterns within
a set of given observations. Recommender
systems rely heavily on these techniques.

In contrast, supervised learning is the “learn
by example” approach. Supervised learning
systems need to be given examples of what is
“good” and what is “bad” — this email is spam,
this email isn’t, for example.

In the field of OCR, the system would be
provided with multiple images of different
letters and told which letter that image
represents. As a system is provided with more
examples, it learns how to distinguish between
a spam email and one that isn’t, and it learns
the different arrangements of pixels that can
represent the same letters and numbers. When
a new example is presented to the system,
specifically an example it hasn’t seen before, it
can then identify correctly whether or not the
email is spam, or which address the letter needs
to go to, or the licence plate of the speeding car.

Neural Networks, a Part of
Supervised Learning

Within the field of supervised learning there
are numerous techniques, one of which is
called “neural networks.” Neural networks are
software systems that try to mimic, often
crudely, the way a human brain works. The
concept of the neural network has been around
for decades but it is only relatively recently
that its true power has been realized. A neural
network is made up of artificial neurons, with

each neuron connected to other neurons. As
different training examples are presented to
the network (for instance, an image or an email)
along with the expected output of the system
(the letter in the image, or whether or not the
email is spam), the network works out which
neurons it needs to activate in order to achieve
the desired output.

Here is how it works: The neural network is able
to configure itself so that the neurons that get
activated when a spam email is presented to it
will be different from those triggered by a non-
spam email. As a result, the rest of the system
can then make a decision on how to handle that
email.

One Last thing: Deep Learning

We now get to our final buzzword, “deep
learning.” It’s a very specific and phenomenally
exciting field within neural networks. In the
same way that machine learning enables
artificial intelligence, deep learning enables
machine learning.

Think of a deep network as a larger and
more complex network, with more complex
and sophisticated interactions between the
individual nodes. Deep learning employs
multiple “layers” with complex interactions
within each layer and between layers to identify
patterns and solve problems.

Deep learning is at the leading edge of
machine learning research, and some of the
advances in it have resulted in technologies

5©2018 Moogsoft Inc. All rights reserved.

such as automatic translation, automatic
caption generation for images, automatic text
generation, and even creating plays in the style
of Shakespeare. And in the same way that
machine learning is the main enabler of AI,
deep learning, right now, is the main enabler of
advances in machine learning.

Part 2: A Deeper Look at
Machine Learning

Machine learning systems try to predict a value
for something using three things:

1. A way of describing the subject of our
prediction

2. A question that we want to answer

3. An algorithm that can take the description
and provide an answer to our question

In machine learning terminology, the way that
we tell our system about the subject of our
question is by using something called a “feature
vector.” That may sound a bit abstract, but you
have no doubt heard the phrase “If it looks like
a duck, walks like a duck and sounds like a duck,
then it’s a duck.”

These attributes — how it walks, how it sounds,
how it looks — are examples of different
features, and the value of each feature will help
the machine learning system decide whether
the object is or isn’t a duck.

Every type of object has its own set of features,
and different instances of each type of object
will have different values for those features. All
ducks may swim and quack, but some ducks are
bigger than others and have different colored
plumage.

©2018 Moogsoft Inc. All rights reserved. 6

A common example used in machine learning
courses is that of predicting a house price.
Houses have countless different attributes: How
old is it? How many bedrooms does it have?
What is the total size? Does it have a garden?
What color is the front door? What are the local
schools like? Is it well maintained?

By aggregating the values of each of these
attributes or features into a list or vector,
we have a way of telling the algorithm in
the machine learning system about the
characteristics of the house, and other houses
that may spark our interest.

Features Affect Values

Let’s follow through with this housing example.
The size of a house likely will have the biggest
impact on value, whereas the quality of the local
schools may be important for those buyers with
families of school age. The color of the front
door will have no impact.

So while a subject may have many features, not
all features are relevant to a given problem. As a
result, it’s important that your machine learning
system uses features that discriminate between
the different states that you’re trying to identify,
which depends upon the question you are
asking of your machine learning system.

The process of selecting the most appropriate
features for any given problem is called “feature
selection” or “feature engineering.”

Input Question, Output Answer

Feature engineering gives us a way of describing
our subjects to an algorithm, but what are we
actually trying to do? What is the question we
are asking of our system?

There are two types of questions that machine
learning systems attempt to answer: “Is it a
duck?” or “What is it?” and questions like “How
big is it?” or “How much is a house worth?”

Questions about size produce answers that
have what is called a “continuous distribution,”
where the value can be anywhere between
some practical constraints. This class of problem
is called a “regression” problem. Trying to predict
the price of a house, a stock, the size of a crop
yield, or the capacity of a new data center are all
examples of regression problems.

Regression problems are solved using
supervised machine learning techniques,
because a set of values or labels are required
upon which to base the prediction. Let’s return
to the house price example. We have a set of
different houses and a set of features for each
house. We know the size of the house and
garden, where it’s located, and maybe even the
color of the front door. We also have a label,
knowing how much each house is worth.

Now at some point in all of our experiences,
whether it was in a math class or at work, there
is a good chance that you will have plotted a
graph of some data and then fitted a line to that

7©2018 Moogsoft Inc. All rights reserved.

In supervised learning, the “What is it?”
question is called a “classification” problem,
and the system that is used to answer these
questions is called a classifier. In the world of
unsupervised learning, the “What is it?” question
is a “clustering” problem, and the system used
to answer these questions is typically called a
clustering engine.

Classification vs Clustering

Let’s explore that distinction in more detail.
Classification aims to define the best category
that an object fits into given a predefined set
of possible options. Does the image contain a
face? Is that animal a duck? These are examples
of what is called “Binary Classification,” because
there are only two categories to choose from:
“duck” and “not duck,” or “there is a face” and
“there is not a face.”

There are also classification problems in which
there are multiple categories, systems that can
handle these questions are called “multi-class”
classifiers. For example, “Is that animal a duck, a
dog, or a horse?”

Earlier we briefly described OCR, a machine
learning technique that tries to read text in
images. If we use English text (and for simplicity
ignore upper/lower case characters and
punctuation marks), then each character will be
one of either 26 letters or 10 digits — and so
OCR becomes a 36-class classification problem.

data. So, if we have a graph that shows how the
value of a house changes with its size, and there
is a relationship between those two attributes,
then a simple curve-fitting exercise will allow us
to estimate the price of another house based
only on its size.

For many people, that doesn’t feel much like
machine learning. If you do an Internet search,
there is debate about whether it is or isn’t, as
it certainly doesn’t have a wow factor like, say,
automatic translation between languages or
automatic captioning of an image. But recall
the definition of machine learning from earlier:
machine learning is a technique that allows a
machine to make a decision on data which it
has not seen before. Whether there is a wow
factor or not is irrelevant; the techniques, such
as linear regression used in curve-fitting, even
though they are very simple, form the basis
of numerous algorithms in machine learning.
These undramatic but useful techniques are a
fundamental component of data scientists’ and
machine learning engineers’ toolkits.

In contrast to regression, the answer to a “What
is it?” type of question will come from a set of
categories rather than a continuous range. In
the machine learning world, the these kinds of
questions can be handled in a number of ways,
depending upon what we want to achieve, and
the available data. Questions of this type can be
answered by both supervised and unsupervised
techniques, but the best approach depends
upon the specifics of your question.

©2018 Moogsoft Inc. All rights reserved. 8

The fundamental difference between classifiers
and clustering engines is that in clustering,
the groups into which something is assigned
are unknown in advance and are determined
entirely by the patterns in the data. Clustering
algorithms take a set of objects and split them
into groups, or clusters, where everything in
each cluster, is similar to everything else in
that cluster but different from items in other
clusters.

Let’s say we are trying to create a system that
can recognize different animals, and I have
two systems, a supervised machine learning
approach (a classifier) and an unsupervised
approach (a clustering engine). We will also
assume that the classifier has been well trained
and produces accurate results. Now, if my
collection contains multiple different animals
such as ducks, dogs, and horses, and equal
numbers of each, then if I present that collection
to my classifier, it would correctly recognize
each one and assign it to the appropriate
category.

Similarly, if I presented that collection to a
clustering engine and I had chosen my features
well, I may also expect it to split the collection
into three clusters, one for each animal.
Importantly, though, the unsupervised system
would be unable to label those clusters, as no
one has told it what each cluster represents. It
just knows that each cluster contains similar
things.

But if I change my data so the collection of
animals contains only ducks, then the two
systems start to behave differently. The
supervised system (the classifier) will still be
able to say that each animal is a duck. It doesn’t
care that every example has the same label. It
just compares the features of the animal it has
been presented with against the features of
everything it has previously been told is a duck,
and tries to determine if there is a good enough
match.

However, the unsupervised system, the
clustering engine, which is looking for patterns
within the data it has been presented with, is
now looking for patterns only within that set
of ducks. Many of the features of a duck which
will help to distinguish it from other animals,
(Does it have feathers? Does it have webbed
feet? Does it quack?) will have the same value
for every duck and so the clustering engine
will ignore those features. The clustering
engine tries to find patterns in all the other
features it has been given. So if those other
features include the animal’s color and size, the
clustering engine may well split the collection
into different colored ducks or ducks of different
sizes.

These differences in behavior highlight the
strengths and weaknesses of both approaches.
Supervised systems need to know up-front
what they are looking for and they need to
be trained to look for those categories.Those
activities take time, but the advantage is that

9©2018 Moogsoft Inc. All rights reserved.

a duck will always be a duck. Unsupervised
techniques will look for hidden patterns in your
data — the “unknown unknowns” — and if
your data changes, then your patterns will
change, too.

So, if you know that you are trying to identify
whether an animal is a duck, an unsupervised
system probably won’t give you the answer you
expect. But if you want to find groups of similar
ducks, groups of big ducks and little ducks, or
white ducks and yellow ducks, then clustering
techniques are the best approach.

Clustering, regression, and classification can
be used to answer a vast array of questions
or solve a multitude of problems. Problems
exist everywhere, including in the world of IT
Operations.

Part 3:
Fishing in a Sea of Data

Before ITOps teams can utilize machine learning
and AI to analyze data, they need to define
what exactly they’re trying to achieve. We have
already looked at terminology used in machine
learning, and explored machine learning
techniques, including clustering, classification,
and regression, and the problems that they
are best suited to address. Here, we will start
to investigate how machine learning can solve
many of the problems that are faced everyday
in IT Operations, and specifically how ML helps
with the process of data ingestion and the
reduction of alert fatigue on operators.

What are IT Ops Teams trying to
achieve?

It is stating the obvious to say that the ongoing
objective of IT Operations teams is to minimize
resolutions times, reduce costs, and eliminate
customer impacting outages.

©2018 Moogsoft Inc. All rights reserved. 10

These are the problems that AIOps was
designed to address.

Fitting Machine Learning into IT
Operations

Machine learning and artificial intelligence are
used everywhere, and there is no doubt that
these technologies can produce extraordinary
solutions. Still, throwing machine learning at a
problem isn’t ideal.

The variety of techniques is huge, and the
right ones need to be adopted for the specific
problem. Machine learning has its shortcomings,
too. There are circumstances that are better
suited for a logic-based algorithm approach.
Algorithms need to be coupled with a clean and
efficient user experience, and sometimes it’s the
UX innovations that are key.

So let’s dig into some of the pain points around
event ingestion, and see where machine
learning techniques can provide some or all of
the solution.

Alert Fatigue

Examples of alert fatigue exist everywhere. It is
exemplified by those things that happen around
us everyday that we ignore because they are so
commonplace. When was the last time that you
really noticed a fire drill?

Alert fatigue comes about through the
avalanche of data that modern systems
generate. In even a modest-sized enterprise, an

Breakages are a fact of life in any system,
regardless of the underlying architecture. It
is how an operations team deals with those
failures, and the quality of the tools at their
disposal, that allows them to achieve their goals
and meet business needs.

No one sets out to design a system that is
hard to manage or prone to failure, but some
architectures can increase the demands
on an operations team. Often, the system
architectures that a business requires —
such as cloud computing, micro-services, and
continuous deployment — are the ones that
can add significant management complexity and
increase the number of points of failure in that
system, making the tools that are available to
an operations team even more important.

The Pain Points

The pain points that show up as long resolution
times and customer-facing outages stem from
things such as:

• Alert fatigue

• Difficulty in identifying the cause of a
problem

• Inefficient communication

• Poor collaboration

• Poor remediation processes

Adopt an approach and toolset that solve these
issues, and your team is no longer fighting fires,
but has the time to improve. You’re using time
now to save time in the future, while meeting
the commitments made to your customers.

11©2018 Moogsoft Inc. All rights reserved.

IT infrastructure can generate millions of events
a day. Add raw time-series data to that mass of
data, and the volume can increase significantly.
Buried somewhere in all of those application
heartbeats and “authentication failed’ messages
will be the handful of alarms that pinpoint a
customer-impacting failure and its root cause.

Minimizing alert fatigue isn’t simply about
reducing the volume of events that need to
be processed, though — that’s easy, and the
wrong approach. Filtering an event stream
to ignore certain sources and thresholding to
only process critical alarms are examples of
techniques that will reduce the volume of data,
but at the same time discard the possible cause.
They are also techniques that require a human
to maintain.

One of the most enduring techniques for volume
reduction is event deduplication, the act of
grouping repeating events to a single alert. On
its own, this approach can no longer produce the
required impact. The volume of data, even after
deduplication, is still huge. But to its advantage,
it doesn’t remove data from the system. Your
team is presented with a more manageable
amount of data.

The real solution to alert fatigue needs a
different approach, and it’s an approach made
up of several stages.

Yes, it is about discarding those alerts that are
meaningless, but it is also about processing
what’s left in a way that allows your ITOps team

“Machine learning
is the science of
getting computers
to act without
being explicitly
programmed.

©2018 Moogsoft Inc. All rights reserved. 12

to get to the cause of the problem quickly, and
displaying the information that gets them there
in an easily consumable way.

It’s about knowing what normal is, and what
it isn’t, and this is where machine learning and
data science techniques are needed — using
past data to provide a benchmark of what is
normal for your infrastructure.

Normal Is Different for Everyone

For the initial part of the process, AIOps uses
a concept of entropy as a way of achieving
noise reduction. In this context, entropy means
that we are looking for events with lower
probability, which means that they carry more
information than higher-probability events. This
value encapsulates the what, when, and where
of an event: What is the event? When does it
happen? And where in the infrastructure is it
coming from? And we use these questions to
build a picture of what is normal, based on the
analysis of past events. So we can then evaluate
whether events entering the system require an
action.

First, let’s take a look at time series data.

Time Series Data: Only Forward the
Anomalies, Please

Time series data is the periodic reporting
of status data from a server, or application
reported by a monitoring solution. If all is well,
your server may report that it has “25% CPU
utilization” and “45% free disk capacity,” and it

will keep doing that every five minutes, until you
tell it to stop. Another 288 events per metric
per server per day. Almost every one of which
will be reporting, “I’m fine, there’s nothing to see
here!”

An ops team doesn’t need to see this sort of
data; they only need to know when something
has gone wrong, when something is out of
the ordinary, and this is where we step into
the world of outlier detection and anomaly
detection.

Outlier detection and anomaly detection are
terms that are sometimes used interchangeably.
At Moogsoft we favor the following definitions.

An outlier is a value of a metric that is different
from other values of that same metric when
you would expect them all to be similar. For
example, the CPU load on the servers behind
a load balancer may be expected to lie within
a very specific range. Let’s say CPU utilization
fluctuates between 40% and 50% but at one
specific time of day there is a single server
running at 70% CPU. That specific measurement
may be classified as an outlier: it is different to
all the other servers’ CPU usage.

The presence of an outlier may also indicate
an error in your monitoring, a value that is so
far from expected that perhaps it’s not the
systems being monitored, but the method itself.
However, just because a value is an outlier
in one context, it doesn’t necessarily mean
that it is anomalous. An anomaly is where a

13©2018 Moogsoft Inc. All rights reserved.

measurement doesn’t follow historical trends.
So our hot-running server, whilst an outlier in
the context of similar servers at a specific point
in time, may always run at 70% because, for the
sake of argument, it is the master server in an
HA group. If its utilization spiked to say 95%, that
would be an anomaly because it is not following
its historical behavior.

But what has this got to do with machine
learning and alert fatigue? Simply ignoring time
series data is not an option, despite the volume
of data, so instead of forwarding every piece of
time series data to your operators, you should
only forward your anomalies. But how do we do
that?

A simplistic approach is to use a simple
threshold: If CPU is greater than 80% it’s an
anomaly. But what is right for one set of servers
won’t be for another set. Maybe CPU spikes are
expected at certain times of day but running at
95% in the middle of the night isn’t. Accounting
for these scenarios with manually created
rules quickly becomes too complex for these
thresholding techniques.

The more complex your criteria become, the
more complex the underlying algorithms tend
to be. Some very effective (and non-machine
learning) algorithms do exist to capture
these use cases, techniques such as dynamic
thresholding and “seasonality and trend
decomposition.” But to capture the full array of
scenarios, you need to add machine learning
techniques into your algorithmic toolbox.

Unsupervised clustering techniques such as
k-means, or nearest-neighbor clustering are
often used for outlier detection. But when
business needs require us to identify whether
a metric is following historical behaviors and
trends, we soon get into the state-of-the-art
deep-learning-based solutions using recurrent
neural networks — solutions involving
techniques such as Hierarchical Temporal
Memory or Long Short-Term Memory.

Enrichment

At this point in the life cycle of an alert we have
de-duplicated our event stream, removed the
noise, and are reporting only anomalies from our
time-series monitoring solution. But the impact
of machine learning on data ingestion doesn’t
end there.

The more AIOps knows about an alert, the
higher the accuracy with which that alert can
be processed. But the richness of the data in an
alert is highly dependent upon its source. Events
forwarded from an APM platform will contain
highly relevant data about an application and
the services that it provides. The SNMP Traps
generated on your network hardware comply
with strict protocols, and generally contain well
structured, explicitly labeled data.

Contrast that with the events from a data
aggregator or a raw application log file, and the
situation is very different. Your systems need
to be able to extract the relevant parts of the
message to create a coherent alert.

©2018 Moogsoft Inc. All rights reserved. 14

As always there is a solution that relies upon
manually created and maintained rules:
regular expressions to match tokens such as
IP addresses and dates and time, keyword
matching such as “LinkDown” and “LinkUp” to
match fail/clear pairs, or “login fail” and “invalid
password” to indicate the alert is related to a
security issue. While this approach has utility
and can be highly effective, it is now outdated.
The complexity and quantity of the different
look-ups soon becomes overwhelming:
the maintenance issue is obvious, and it is
surprisingly resource intensive when applied
in real time against thousands of alerts per
second.

It will come as no surprise by now that machine
learning techniques can help us out. Named
Entity Recognition techniques borrowed from
the field of Natural Language Processing provide
more efficient ways of extracting different
types of tokens from the event text. Supervised
learning techniques such as classification
can help us identify the class of an alert: is it
related to “audit” or “security,” or is it from an
application or a piece of network hardware, even
if it is a state-transition event as part of a fail/
clear pair?

So far we’ve looked at some of the ways
machine learning can be used to help ingest
data and reduce the volume of data presented
to your operations team whilst retaining the
important stuff. But that’s not where we end
our quest to reduce alert fatigue.

Part 4:
Applying Machine Learning
Algorithms Within AIOps

As we continue the journey of an alert through
the management process, we begin to see
how machine learning can be used to reduce
alert fatigue. Previously, we concentrated
specifically on reducing alert fatigue during
event ingestion. Prior to that we looked at the
background to machine learning, examining
some of the terminology and buzzwords,
along with an overview of the different types
of problems that machine learning can be
applied to, and their solution techniques —
techniques such as clustering, supervised and
unsupervised learning, and problem types such
as classification and regression.

Alert Fatigue

During the event ingestion process,
deduplication and unsupervised machine
learning techniques such as entropy are well
known approaches that AIOps exploits to
reduce event noise. Add in anomaly and outlier
detection for processing time-series data, and
we have an effective way of reducing thousands
of events to little more than a handful of alerts.
But reducing alert fatigue doesn’t stop there.

The whole concept of situational awareness,
part of the founding principles behind AIOps,
brings about the next layer of relief from the
pain of alert fatigue. Add a sprinkling of Probable
Root Cause into the mix, and we start to attack

15©2018 Moogsoft Inc. All rights reserved.

our other pain points too, specifically: identifying
the cause of an incident, and poor remediation
processes.

Once an alert has been ingested, assigned
an entropy, deduplicated, and enriched with
external data, we have everything needed to
inform the creation of actionable incidents,
or “situations,” in the form of operationally
significant groups of alerts. Sometimes, the
required information may be incomplete.
Sometimes the enrichment data may have
been retrieved from multiple sources leading
to conflicts in what should be canonical data
— not ideal, but the sort of real-world problem
that needs to be handled by IT management
systems

The process of grouping alerts is generally
referred to as “correlation.” The dictionary
definition of correlation is “a mutual relationship
or connection between two or more things
which tend to occur together in a way not
expected on the basis of chance alone.”

Correlation

In the world of IT Operations, correlation is
often interpreted as the ability to make deep
connections between seemingly disparate data,
and while that is certainly part of the challenge,
it isn’t the entire challenge. What constitutes a
relationship or a connection in the first place?
Well, it’s anything the managing enterprise
wants it to be, and what is meaningful in one
organization may mean nothing in another.

©2018 Moogsoft Inc. All rights reserved. 16

There are certainly failure scenarios in which
the correlation need is universal across all
organizations — correlating link-up and link-
down pairs to identify a flapping interface,
for example. But there are many use cases in
which the approach to correlation chosen by
one enterprise may not align with how another
needs to manage their infrastructure.

Consider an ISP that chooses to manage
their street-level access infrastructure based
on network topology. What about the retail
bank that wants to manage its branches and
Automated Teller Machine network based on
street address? Or the Web Service Provider
that finds the most efficient way to manage
their infrastructure is to group alerts in a
way that mirrors the remedial steps that its
operators need to take, even though the failures
may be on disparate parts of its infrastructure
and share no form of topological or geographical
proximity?

The core events across all of these use cases
will be very similar, maybe even identical. But
there isn’t, yet, a one-size-fits-all algorithm that
can understand that these otherwise identical
alerts need to be handled in a certain way in one
organization, and in a completely different way
in another.

Consequently, and in order to address the
wide variety of operational methodologies
across different enterprises, AIOps use multiple
different criteria to correlate alerts, criteria such
as event arrival times, network topological-

“A prime example of
modern AI is in virtual
and voice assistants
such as Siri, Cortana, or
Alexa, all of which employ
technologies that allow
them to “hear” a human
voice, understand which
sounds correspond to
which words and phrases,
infer meaning from the
series of words that were
identified, and formulate
an answer.

17©2018 Moogsoft Inc. All rights reserved.

proximity, and contextual similarity between
combinations of alert attributes.

In AIOps we call the processes responsible for
finding the connections between alerts and for
creating situations “sigalizers.” A single instance
of AIOps can run multiple types of sigalizers and
multiple instances of each sigalizer concurrently.

Where necessary, events can be routed along
different processing paths. This allows different
sigalizers to process different events depending
upon each event’s characteristics. For example,
“availability” events from the core of a network
may be processed independently of other
events by the time-based or topology-based
sigalizers, while “application” and “security”
events may need processing together by a
sigalizer based on contextual similarity.

What About the Machine Learning?

All of our sigalizers use machine learning in
some form, whether via an unsupervised
clustering technique alongside a fuzzy matching
algorithm, or algorithms that learn from user
interaction.

“Tempus,” “Nexus,” and “Speedbird” are all
examples of sigalizers that rely exclusively upon
unsupervised machine learning.

Tempus

Tempus correlates alerts based on time,
grouping alerts with similar event arrival
patterns. At its core are community-detection

algorithms borrowed from the world of graph
theory. Tempus requires only a single piece of
data for its operation: the event arrival time.
It takes no account of, and has no need for,
any other event attributes. The sweet spot for
Tempus is availability-related failure scenarios in
which all the different failure events are likely to
be coincident in time.

Nexus

For topology-based use cases, the sigalizer of
choice is Nexus, and so perhaps unsurprisingly,
it requires access to a topology database. Nexus
clusters alerts based on where they are in the
network, and can only cluster events from
entities within that topology.

Speedbird

Speedbird uses contextual similarity as its
correlation criteria, grouping events based on
the similarity of one or more event attributes
such as description, or severity, or any other
data enriched into it.

Both Speedbird and Nexus utilize a proprietary,
unsupervised, clustering engine based upon
the wellknown ‘k-means’ algorithm. One of the
perennial challenges with k-means clustering
is the need to supply a value for ‘k’, the number
of clusters the algorithm looks for. AIOps uses a
patented way of determining that information,
so it can automatically adapt to the inbound
event data.

©2018 Moogsoft Inc. All rights reserved. 18

Feedback

At the opposite end of the machine learning
spectrum is our “Feedback” sigalizer.
While Tempus, Nexus, and Speedbird use
unsupervised learning, Feedback uses
supervised learning. It looks at the actions
performed by an operator during the incident
resolution process: Did the operator need to
remove outlier alerts? Were there some related
alerts that needed to be added to the situation?
Was the situation given a 5-star rating, or
marked as being of low-quality? These are the
training triggers that AIOps can take and use to
inform the creation of future situations.

Pure unsupervised and supervised techniques
provide great utility, but there are circumstances
in which they may not be the optimal choice.
As we’ve seen, the power of unsupervised
techniques is to find hidden structure within
a dataset. But what if that hidden structure
doesn’t align with your management strategy
all of the time? Tempus and Speedbird are highly
capable at generating seed situations that
Feedback can refine, but as we learned in earlier
posts, these are statistical methods that rely
upon the quality of the training data they are
provided with. “Garbage In, Garbage Out” as the
saying goes.

ACE

This is where ACE, our Algorithmic Clustering
Engine, comes in. One perspective on ACE
is that it is, as a hybrid, method somewhere
between supervised and unsupervised learning.

The thing is, by the letter of the definitions
provided in data science textbooks, ACE isn’t
really supervised learning — we don’t provide
the system with labelled data — but at the
same time it is so much more than a pure
unsupervised technique. We can give ACE
hints on how we want it to behave, so “guided
learning” or “guided intelligence” are perhaps
better descriptions of its capabilities.

ACE uses unsupervised clustering algorithms
bespoke to AIOps. ACE is a novel streaming-
based clustering algorithm, but the criteria used
to assign an event to a cluster or situation are
controlled by simple, similarity-based directives
that use fuzzy matching techniques to find the
most appropriate group of events to match it
with. Something that it is impossible to do with
a standard unsupervised clustering algorithm.

And One More Thing…

We have tracked our alerts through the
management process, they have been ingested,
de-duplicated, and entropy-based noise
reduction has allowed the meaningless alerts to
be discarded. And alerts meeting the requisite
correlation criteria have been grouped into
situations. But there’s one more application of
AI to consider in the fight against alert fatigue
— a feature called “Probable Root Cause,” or
PRC.

A situation may contain only a handful of alerts,
it may contain many tens or even hundreds.
And of course, while AIOps has removed the

19©2018 Moogsoft Inc. All rights reserved.

meaningless events and collapsed potentially
thousands of events into a single actionable
incident, operators still need to know which
alert to fix first, and that’s where Probable Root
Cause comes in. PRC is the call to action, the
way to inform operators of the alert they need
to focus their attention on.

Probable Root Cause is an application of
supervised machine learning, specifically a
classification problem solved with a neural
network.

By providing feedback during the incident
resolution process, AIOps learns those alerts
that are root causes, and the circumstances in
which they happen. It learns the circumstances
under which a humble ping fail is the root
cause, but also, when different alerts have been
triggered, that the same ping fail is now only
a symptom — a symptom of a power supply
failure, for example.

By utilizing supervised learning, PRC isn’t
dependent upon the static behavioral models
that legacy root cause analysis systems
rely upon — behavioral models that are
slow to adapt to rapidly changing virtualized
infrastructures, models that can’t handle
common infrastructure implementations such
as overlay networks. PRC is not constrained
to a predetermined model of an infrastructure
or the device types therein, and importantly, it
can learn the way an organization chooses to
manage its infrastructure.

Significantly, PRC also has a capability that
other approaches to root cause analysis simply
cannot hope to emulate. It can tap into the
tribal knowledge buried in the minds of your
operators, the knowledge built up over years
of managing your infrastructure, knowledge
than remains in your organization even when
your key personnel move onto new pastures.
Not only does PRC, AIOps’ machine-learning
approach to root cause analysis, contribute to
the fight against alert fatigue, but it also informs
the remediation process.

The power of machine learning is
unquestionable, but it isn’t a silver bullet —
different algorithms have different sweet-spots.
That applies across the board, whether you are
using machine learning or an algorithm based
on pure logic. And that is where the art lies, and
what AIOps achieves — knowing the optimal
approach to solving a problem so you don’t
need to.

Moogsoft | 1265 Battery St., SF, CA, USA, 4111

Moogsoft
Moogsoft builds AIOps solutions that help IT teams work
faster and smarter to provide better customer experiences.
With patented algorithms analysing billions of events daily
across the world’s most complex IT environments, Moogsoft’s
unique technology helps enterprise companies such as SAP®
SuccessFactors®, Intuit®, GoDaddy™, and HCL Technologies
avoid outages and increase their operational agility. To learn
more, visit www.moogsoft.com.

Author Bio
Rob Harper is Chief Scientist at Moogsoft. Previously, Rob
was founder and CTO of Jabbit and has held development and
architect positions at RiverSoft and Njini.

